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Abstract
We extend a fundamental factor model by applying a statistical model to its residuals. This
hybrid approach keeps the familiar, intuitive structure of the fundamental model while
adding statistical factors to capture additional structure in the residual covariance. By
ensuring that the statistical factors are orthogonal to the fundamental ones, we preserve
the interpretability of the fundamental factors and at the same time improve estimates of
residual risk.
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1 Introduction
We often use fundamental factor models because they are intuitive and tied
directly to observable characteristics such as industries, styles, or exposures.
These models provide a clear link between financial characteristics and the
associated portfolio risk. In practice, the residual risk from a fundamental
model may disguise patterns of common variation across assets. If these
correlations exist but are not modeled, the model is likely to underestimate
portfolio risk.

A hybrid model addresses this by applying a statistical risk model to the
residuals from a fundamental factor model. The statistical factors capture
structure in the residual covariance that the fundamental model leaves in
the idiosyncratic term. By orthogonalizing these statistical factors with
respect to the fundamental exposures, we leave the fundamental factors,
their returns, and their covariance completely unchanged. This preserves
the interpretability of the fundamental model while improving the accuracy
of risk estimates.

Such a hybrid model provides risk estimates and risk attribution just like
a purely fundamental model, except that a few of the factors are statistical
and are not directly associated with observable characteristics.1

A purely fundamental model also enables intuitive return attribution. In
the hybrid model, we continue to use the fundamental factors for return
attribution. This fundamental return attribution is not affected by the
addition of the statistical components since the fundamental components
remain unchanged by design. Unfortunately, the statistical factors have
arbitrary signs and can rotate period by period. This unavoidable ambiguity
makes multi-period return attribution with statistical factors difficult to
interpret. The statistical components are best understood as tools for risk
estimation, not for interpreting realized returns.

By constructing the statistical risk model for the residuals from the
fundamental factor model we clearly give priority to the fundamental factor
model. The fundamental factors are easier to interpret and easier to estimate.
The only reason to add the statistical model is that we have not yet identified
additional fundamental factors to capture the remaining structure. In this
sense, the statistical factors are a convenient interim solution while we
search for additional fundamental factors.

1 The term hybrid factor model has been used in the literature in different ways. Menchero
and Mitra (2008) combine fundamental definitions for some factors with statistical estimation
for others. The approach here differs: we retain a full set of fundamental factors and then
apply a statistical model to the residuals. This may be similar to the risk model structure of the
“Everything Everywhere” risk model by Northfield Information Services; but details of this
model are not publicly available.
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The next sections summarize fundamental and statistical risk models,
respectively. Section 4 describes in detail how to combine these two ap-
proaches. Section 5 concludes.

2 Fundamental Factor Model
Following Connor (1995), we construct a fundamental factor model for N
assets. Let rt+1 denote the (N× 1) vector of asset returns from time t to t+1.
Assume that the returns follow a K-factor fundamental model of the form

rt+1 = Xtbt+1 + εt+1, (1)

where Xt is the (N × K) matrix of known factor exposures at time t, bt+1

is the (K× 1) vector of factor returns over [t, t+1], and εt+1 is the (N × 1)
vector of residual returns.

The factors Xt can include a wide variety of security characteristics. We
can include market exposures, either as dummy variables or as betas. In
similar form, we can include industry or asset class exposures. We can
include security characteristics like company size, valuation ratios, past
return patterns like momentum or reversals, or bond duration. We generally
choose these characteristics because we can demonstrate that they contribute
to risk shared across the assets. We can also include characteristics that we
use to predict returns and construct portfolios, since these generally also
contribute to risk. Examples of this include proprietary valuation measures.

2.1 Factor Risk Model
Conventionally, fundamental factor models assume that the residual returns
εt+1 are mean-zero, uncorrelated across assets, and uncorrelated with the
fundamental factor returns bt+1. Under these assumptions, the return
covariance matrix is

Σt = XtΩtX ′
t + Dt, (2)

where Ωt is the (K× K) covariance matrix of factor returns and Dt is the
(N × N) diagonal matrix of asset-specific residual variances. In this de-
composition, all systematic co-movement is captured by the factor structure
XtΩtX ′

t , while Dt models risk that is unique to each asset.

With the covariance matrix Σt, we can estimate and manage total risk
for a portfolio, estimate and manage portfolio risk contributions from the
different factors, and use these risk estimates in portfolio construction.
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2.2 Pure Factor Portfolios
From the exposures Xt, we can construct K pure factor portfolios with unit
exposure to each factor and zero exposure to all others. One approach is

Wt = Xt(X ′
t Xt)−1, (3)

which yields the ordinary least squares (OLS) factor mimicking portfolios. A
more general, and often preferred, approach applies weighted least squares
(WLS) to find

Wt = ΓtXt(X ′
t ΓtXt)−1, (4)

where Γt is a diagonal matrix of asset weights, such as inverse residual
variances Γt = D−1

t or market capitalization weights.

The factor (X ′
t ΓtXt)−1 standardizes and decorrelates the exposures Xt,

so that column j of Wt is the (N × 1) factor mimicking portfolio with unit
exposure to factor j and zero exposure to all other factors,

W ′
t Xt = IK. (5)

Any portfolio with exposures in the column space of Xt can be written as a
linear combination of these pure factor portfolios.

Because Xt is observable at time t, these portfolios are known in advance
and can be held to realize the corresponding factor return for the next period

b̂t+1 = W ′
t rt+1 (6)

= (X ′
t ΓtXt)−1X ′

t Γtrt+1 (7)

= bt+1 + (X ′
t ΓtXt)−1X ′

t Γtεt+1. (8)

Of course, neither the security returns rt+1 nor the factor returns bt+1 are
known in advance.

The return we earn is equal to the true factor return bt+1 plus some noise
that we were unable to diversify away. The main reasons for weighting the
data are to estimate the true factor returns more precisely and to earn the
true factor return with less risk.

2.3 Covariance Estimates
In order to populate the covariance matrix in equation (2), we need estimates
of the factor covariance Ωt and the idiosyncratic variances Dt. We already
have the factor exposures Xt.
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By inspection of equation (7), we can see that the factor return estimates
are equal to regression estimates of bt+1 from a multivariate regression of
rt+1 on Xt, using weights Γ1/2

t for all observations. These regressions are
familiar from Fama and MacBeth (1973).

The variances in Dt are the variances of the regression residuals

ε̂t = rt+1 − Xtb̂t (9)

= (IN − XtW ′
t )rt+1. (10)

For variance or risk estimates, we commonly use exponentially weighted
estimates.2 This approach usefully approximates the ARCH and GARCH
structure of security variances documented by Engle (1982) and Bollerslev
(1986). We can apply these weighted averages to estimate the sample
covariance of b̂t and the sample variances of ε̂t.

2.4 Announcement Effects
If we wish to model event-time risk associated with announcements of earn-
ings or macroeconomic data, it is best to make these adjustments at the level
of the fundamental model. We may include an earnings announcement fac-
tor or adjust the time-series model of residual volatility. Accounting for this
structure before applying a statistical risk model improves the stationarity
of the residuals and helps the statistical model extract persistent structure.
The statistical risk model itself cannot anticipate earnings announcement
dates.

3 Statistical Risk Model
Following Connor and Korajczyk (1986) and Connor (1995), a statistical
risk model provides a low-rank approximation to the covariance matrix
by extracting a small number of principal components (PCs) from returns.
Once again, the idea is to summarize co-movements in asset returns with a
few factors, leaving only asset-specific risk in the residuals. Here, however,
the common factors are latent and not specified explicitly. Instead, we
estimate the factor exposures and factor returns.

If weighting of the observed returns is helpful in estimating the funda-
mental factor model, it is helpful for any estimation using the returns. The
primary objective is to reduce heteroskedasticity across observations. This
is accomplished with the same weights. As a result, we apply the same
observation-specific weights here. Let Γt be the positive definite (N × N)

2 For example, see the RiskMetrics description in J.P. Morgan/Reuters (1996).
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weighting matrix at time t, and define the whitened returns

rt+1 = Γ1/2
t rt+1. (11)

We use the underline notation to indicate that rt+1 is the whitened version
of the corresponding variable rt+1 and underline all variables associated
with the whitened return space.

In practice, Γt is usually diagonal, with entries chosen to standardize
residual variances from the fundamental regression (for example, setting
Γii,t equal to the inverse of the residual variance for asset i). This whitening
step does not change the span of the residuals but rescales them so that
each contributes comparably. By doing so, the statistical model emphasizes
structure in the correlations rather than being dominated by a few assets
with high residual volatility.

Stacking a T-period sample of such vectors gives the (N × T) matrix of
weighted returns R. The cross-sectionally weighted sample covariance is
then

Σ̂t =
1
T

R R′, (12)

which replaces the unweighted covariance RR′/T. As before, we can apply
exponential weighting to the covariance estimate.

3.1 Principal Components

We now decompose Σ̂t into its principal components. Let Zt denote the
(N × k) matrix of the top k eigenvectors, and let

Λt = diag(λ1t, . . . , λkt) (13)

collect the associated eigenvalues. By construction, the eigenvectors are
orthonormal, so that

Z′tZt = Ik. (14)

As for the fundamental factor model, we choose a number of factors k that
is materially smaller than the number of assets N.

Under this model, we approximate the covariance of whitened returns
using k statistical factors as

Σ̂t = ZtΛtZ
′
t + ∆t, (15)
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where ∆t is a diagonal matrix of residual variances.
The diagonal factor covariance Λt is especially useful here because the

signs of the eigenvectors Zt are indeterminate. A random change in sign
has no effect on squared variance terms but makes the covariance estimates
unreliable, unless they are zero.

When we use k = N statistical factors, the factor model fully describes
the covariance matrix and ∆ = 0. If we use fewer statistical factors, k < N,
then allowing for idiosyncratic risk improves the approximation to the
covariance.

The associated factor model for the whitened returns once again takes
the form

rt+1 = Zt f
t+1

+ et+1, (16)

where et+1 are whitened residuals because they are derived from whitened
returns. The projected returns Z′trt+1 are not, by default, factor returns in
the usual sense because Zt is often estimated using a sample that includes
rt+1. This makes investments conditional on Zt infeasible at time t. However,
if Zt is based only on data through t, then

f̂
t+1

= Z′trt+1 (17)

is a factor return. Since Zt is orthonormal, the factor exposures are equal to
the factor portfolio weights.

3.2 Mapping Back to Raw Returns
Since we base the entire estimation on whitened returns, the resulting
covariance matrix is for the whitened returns. To move back to raw returns,
we use

rt+1 = Γ−1/2
t rt+1, (18)

with covariance

Σt = Γ−1/2
t ΣtΓ

−1/2
t (19)

= Γ−1/2
t ZtΛtZ

′
tΓ
−1/2
t + Γ−1/2

t ∆tΓ
−1/2
t . (20)

3.3 The Number of Components
In practice, the number of statistical factors k must be chosen carefully
to balance model complexity with estimation error. Common heuristics
include stopping at the “elbow” of the scree plot of eigenvalues, setting
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a minimum variance threshold (e.g., explain 50% of total variance), using
information criteria designed for factor models, or optimizing the cross-
validated forecasts. The main requirement is that k ≪ N.

When working with a sample containing T periods, the most common
approach is to choose the smallest k such that the top k eigenvalues explain
a target proportion of the total sample residual variance

∑k
j=1 λj,t

∑m
j=1 λj,t

≥ ℓ, with m = min{N, T}. (21)

We typically choose ℓ between 30% and 90%, and λj,t are the eigenvalues.
Here, the dual PCA interpretation of Connor and Korajczyk (1993) and

Jones (2001) can be helpful when T < N. The nonzero eigenvalues of the
(T× T) matrix R′R/T are the same as those of the (N × N) matrix R R′/T.
This formulation avoids explicit estimation of the full (N × N) covariance
when N > T and provides direct access to the nonzero spectrum.3

When T is not too small, one can adapt information criteria such as those
proposed by Bai and Ng (2002). These penalize model complexity and have
asymptotic justification under high-dimensional assumptions. Although
they require estimation of more than k eigenvalues, they can also be applied
on R′R to avoid working with the full (N × N) matrix.

Ultimately, the choice of k should balance statistical parsimony, stability
over time, and marginal improvement in risk estimation.

3.4 Eigenvalue Shrinkage
Marchenko and Pastur (1967) and Johnstone (2001) show that the eigen-
values of Σ̂t contain systematic errors when N is large relative to T: the
largest eigenvalues are biased upward, the smallest are biased downward,
and variance is misallocated across components.4 To stabilize risk estimates,
we can shrink eigenvalues before using them in risk forecasts or portfolio
construction. This also suggests that we should either choose k based on the
shrunk eigenvalues or iterate over choices of k and shrunk estimates. The
shrinkage applies to the eigenvalues only. It does not affect the eigenvectors.

The nonlinear shrinkage methods of Ledoit and Wolf (2015) and Ledoit
and Wolf (2020) shrink the estimated eigenvalues λj,t to λ̂j,t using the

3 If we also want to recover the N-dimensional eigenvectors corresponding to these eigen-
values, we can obtain them by premultiplying the (N × T) residual matrix R with the T-
dimensional eigenvectors of R′R/T and re-normalizing. In the present context, however, we
only require the eigenvalue spectrum to choose k.

4 Whether we compute eigenpairs via the (N × N) covariance or its (T × T) dual has no
effect on the precision of the eigenvalue estimates, it is purely a computational choice. The
statistical accuracy of these estimates is determined entirely by the ratio N/T, not by which
representation we use.



8 Hybrid Risk Models

empirical eigenvalue spectrum. These procedures can be applied to the
leading part of the spectrum (via the (T × T) dual PCA when T < N),
and typically improve out-of-sample risk forecasts relative to unshrunk
eigenvalues or simple linear rules, especially when ν is large. Unfortunately,
they are somewhat complex.

A simpler mechanism applies linear shrinkage to the estimated eigenval-
ues. Let λt denote the average variance per asset

λt =
1
N

Tr
(

Σ̂t

)
. (22)

We can use this as a shrinkage target for the estimated eigenvalues.5

For the top k retained components, define the shrunk eigenvalues as

λ̂j,t = (1− θ)λj,t + θλt, j = 1, . . . , k. (23)

The shrinkage intensity θ ∈ [0, 1] controls the trade-off: θ = 0 is no
shrinkage, θ = 1 collapses all retained eigenvalues to the grand mean, and
intermediate values blend the individual estimates with the grand mean.

A practical rule of thumb ties θ to the dimension ratio ν = N/τ,

θ ≈ ν

1 + ν
, (24)

where τ is the effective number of sample periods. If we equally weight
all observations, then τ = T. If we exponentially weight observations with
exponential coefficient ϕ, then the effective number of observations is

τ ≈ 1 + ϕ

1− ϕ

1− ϕT

1 + ϕT . (25)

When we use slow exponential decay, ϕ ≈ 1, so that τ ≈ T. When T becomes
very large, τ ≈ (1 + ϕ)/(1− ϕ). For additional details, see Hentschel (2024).

If N ≪ T, then ν is small and θ is close to 0 and we apply light shrinkage.
If N ≈ T, then θ ≈ 0.5. If N ≫ T, θ is close to 1 and we apply stronger
shrinkage. This rule is transparent, easy to implement, and robust in
practice.

After shrinking, the working covariance is

Σ̂t = ZtΛ̂tZ
′
t + ∆t. (26)

5 When T < N and we compute eigenpairs via the (T × T) dual PCA (eigendecomposition
of R′R/T), the correct target remains λt = Tr(Σ̂t)/N, i.e., total variance divided by the number
of assets. This can be computed directly from the sample variances (the trace) without forming
the (N × N) matrix.
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where Zt is composed of the top k eigenvectors of the covariance matrix Σ̂t.
The covariance Λ̂t = diag(λ̂1t, . . . , λ̂kt) contains the corresponding k largest,
shrunk eigenvalues. In practice, shrinking the largest few eigenvalues and
treating the remainder as idiosyncratic risk balances stability with parsimony
and avoids overfitting. Such shrinkage affects the factor covariance but not
the residuals and their variances.

3.5 Covariance Estimates
In order to populate the covariance matrix in equation (26), we need esti-
mates of the factor covariance Λ̂t and the idiosyncratic variances ∆t. We
have the factor exposures Zt and weights Γt for each period.

We can estimate the sample covariance Σ̂t of the period-by-period weighted
returns rt, possibly with exponential weights. From this covariance, we
can then extract the eigenvalues and eigenvectors. The k largest, shrunk
eigenvalues populate Λ̂t.

We can estimate the residual covariance from the whitened residual
returns

êt+1 = rt+1 − Zt f̂
t+1

(27)

=
(

IN − ZtZ
′
t
)

rt+1, (28)

with ∆t placing Vart(êit+1) on the diagonal. Here too, we can apply expo-
nential weights, if we wish.

After assembling the covariance for the whitened returns rt, we can
translate this back to the raw return space, according to equation (26).

4 Hybrid Risk Model
The hybrid model combines a fundamental factor model with a statistical
factor model applied to the residuals. The guiding principle is to pre-
serve the interpretation of fundamental factors while statistically capturing
additional structure in the residual covariance. To achieve this, we orthogo-
nalize the statistical exposures with respect to the fundamental exposures,
which leaves the fundamental factors unchanged compared to a purely
fundamental model.

For analytical and computational convenience, we construct the statistical
model in the whitened space defined by the same weights Γt used in the
fundamental model, and only map back to raw returns at the end.
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4.1 Fundamental Residuals and Whitening
Let Xt be the (N × K) matrix of fundamental exposures, and define the
whitened regressors X t = Γ1/2

t Xt and whitened returns rt+1 = Γ1/2
t rt+1.

The (weighted/GLS) projection onto the span of X t is

PX,t = X t
(
X ′

tX t
)−1X ′

t. (29)

The whitened residuals from the fundamental model are then

εt+1 =
(

IN − PX,t
)
rt+1, (30)

i.e., the component of rt+1 orthogonal to the span of X t.

We now apply a statistical factor model to these whitened residuals. The
initial steps are identical to the discussion in the previous section.

4.2 Covariance of Whitened Residuals
Stacking T periods into the (N × T) matrix Ê = [ε̂1, . . . , ε̂T ], we form the
sample covariance

Σ̂ε,t =
1
T

Ê Ê
′
. (31)

This is the object on which we apply PCA to extract statistical components.

As before, we frequently use exponentially weighted averages to estimate
empirical covariances. We can do this here. We denote the covariance
estimate Σ̂ε,t, regardless of the estimation method.

4.3 PCA of the Covariance
We compute the eigenpairs of Σ̂ε,t and then choose those associated with
the k largest eigenvalues

Σ̂ε,tžj,t = λj,tžj,t, j = 1, . . . , k. (32)

We can collect the eigenvectors Žt = (ž1,t, . . . , žk,t), so that Ž′tŽt = Ik.

In order to choose k, we can inspect all N eigenvalues after shrinking
them, as described in the previous section.

This gives us a statistical risk model for the whitened residuals from the
fundamental factor model. The statistical factors explain residual returns
that are uncorrelated with fundamental factor returns, on average. At a
point in time, however, the statistical and fundamental factor exposures
may be correlated with each other. To avoid double counting overlapping
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exposures between the fundamental and statistical factors, we now orthogo-
nalize the statistical factors with respect to the fundamental factors. This
intentionally assigns priority to the fundamental factors because they are
easier to interpret.

4.4 Orthogonality to Fundamental Factors
We project the statistical factors into the orthogonal complement of X t

Z⊥t =
(

IN − PX,t
)
Žt. (33)

By construction,

Z⊥
′

t X t = Ž′t
(

IN − PX,t
)′X t = Ž′t0 = 0. (34)

Naturally, rotating the k statistical exposures so they are orthogonal to
the K fundamental exposures requires degrees of freedom. We have the
required degrees of freedom when N > K + k. This is true, unless we have
an unusually small number of assets, N, or an exceptionally large number
of fundamental factors K. In such cases, few degrees of freedom remain.
This constrains the rotation but also makes it unlikely that the residuals
contain material common structure.

Although these components are orthogonal to the fundamental factors,
they are generally no longer orthogonal to each other. We correct this next.

4.5 Cleaning Up the Orthogonalized Exposures
We now transform these orthogonal components to produce statistical expo-
sures that (i) are orthonormal, (ii) remain orthogonal to X t, and (iii) have a
diagonal (k× k) factor covariance, still in whitened space.

Step 1: Apply QR in the residual subspace.

A thin QR decomposition of Z⊥t represents the matrix as the product of an
orthonormal matrix Z̃t and an upper triangular matrix U t

Z⊥t = Z̃tU t, Z̃
′
tZ̃t = Ik, (35)

The matrix Z̃t is (N × k) and U t is (k× k).6 By design of the QR decompo-
sition, Z̃t is an orthonormal basis for the column space of Z⊥t .

6 The thin QR decomposition finds smaller matrices, here (N × k) and (k× k), compared to
the (N × N) and (N × k) matrices of the full QR decomposition.
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The right multiplication by U t or its inverse says that Z⊥t and Z̃t share
the same column space, so that Z̃t is also orthogonal to X t,

Z̃
′
tX t =

(
Z⊥t U−1

t
)′X t = U−1′

t Z⊥
′

t X t = 0. (36)

Step 2: Re-diagonalize the within-subspace covariance.

These revised factor exposures have a (k× k) factor covariance Z̃
′
tΣ̂ε,tZ̃t. We

can diagonalize this covariance by finding the full eigendecomposition

Z̃
′
tΣ̂ε,tZ̃t = QtΠtQ

′
t, Q′

tQt = Ik, Πt = diag(π1t, . . . , πkt). (37)

Here, Qt contains the eigenvectors and Πt contains the eigenvalues.

Finally, we can define the matching rotated loadings

Ẑt = Z̃tQt. (38)

Right-multiplication by Qt stays within the same residual subspace, so
weighted orthogonality to X t is preserved; Qt being orthogonal keeps the
columns orthonormal.

With this, we have achieved our objective of finding statistical factor
exposures Ẑt that have diagonal within-subspace covariance

Ẑ
′
tΣ̂ε,tẐt = (Z̃tQt)

′Σ̂ε,t(Z̃tQt) = Q′
tZ̃
′
tΣ̂ε,tZ̃tQt = Q′

tQtΠtQ
′
tQt = Πt, (39)

have orthonormal columns

Ẑ
′
tẐt = (Z̃tQt)

′(Z̃tQt) = Q′
t(Z̃

′
tZ̃t)Qt = Q′

t IkQt = Ik, (40)

and are orthogonal to the fundamental factor exposures (in whitened space)

Ẑ
′
tX t = (Z̃tQt)

′X t = Q′
t(Z̃

′
tX t) = Q′

t0 = 0. (41)

If the final rotation Qt does not alter the statistical factors materially,
then Π̂t ≈ Πt. In practice, we use the time-series variances of the statistical
factor returns f̂

j,t+1
= Ẑ

′
trt+1 to estimate the diagonal elements of Π̂t,

which may differ slightly from the eigenvalues in Πt. This breaks the strict
link between eigenvalues and factor variances but improves stability by
anchoring variances directly to estimated statistical factor return series.
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4.6 Hybrid Covariance in Whitened Space
If we assume that the factor covariance is block-diagonal, the hybrid covari-
ance of whitened returns is

Σt =
[

X t Ẑt

] [
Ω̂t 0
0 Π̂t

] [
X t Ẑt

]′
+ D̂t, (42)

where Ω̂t = Covt(bt+1) is the covariance of fundamental factor returns, Π̂t

are the factor return variances of the orthogonalized statistical factors, and
D̂t is diagonal, containing the idiosyncratic variances after extracting the
fundamental and statistical blocks.

This covariance matrix retains the standard factor model structure of
exposures multiplying a factor covariance plus a diagonal specific variance.
This structure can be useful for fast matrix inversion and is required by
some portfolio analysis and portfolio construction tools.

Appendix A shows that scalar payoffs like factor returns are invariant to
the return rotation. In our case, both OLS and GLS factor returns are con-
sistent estimates of the true factor returns, even though their finite-sample
estimates may differ. As a result, the covariance of factor returns Ω̂t does
not require further adjustments once we have an estimate. This is convenient
here because we can use the factor covariance we estimated for the factor
returns in the fundamental model without modification. Consistent with
our whitening assumptions, this is the sample covariance matrix of the GLS
factor return estimates.

Although we relax the assumption that residual returns et+1 are uncorre-
lated with each other, we continue to assume that they remain uncorrelated
with the fundamental factor returns. This is a key justification for modeling
additional structure in the fundamental residuals without disrupting the
core interpretation of the fundamental factors.

In the hybrid risk model, we further orthogonalize the statistical factor
exposures with respect to the fundamental exposures. This ensures that
the statistical factors capture variation not already explained by the funda-
mental model. However, this orthogonality holds only in the space of asset
exposures. It does not guarantee zero correlation between realized statistical
and fundamental factor returns in finite samples.

In principle, if the statistical factor exposures Ẑt are estimated using only
data available at time t, one could compute sample correlations between the
corresponding statistical factor returns f̂

t+1
= Ẑ

′
trt+1 and the fundamental

factor returns b̂t+1. However, as emphasized by Miller (2006), such an
analysis is rarely meaningful in practice. Statistical factors (e.g., principal
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components of residuals) are rotation-invariant and may flip signs arbitrarily
across time. These sign instabilities undermine the interpretability of multi-
period factor returns and render correlation estimates inherently unreliable.

While the hybrid model construction implies zero correlation across fun-
damental and statistical factor returns and zero correlation among statistical
factor returns, this is best viewed as a convenient modeling simplification,
not a testable empirical restriction.

4.7 Mapping Back to Raw Returns
While it is convenient to estimate the covariance matrix in equation (42) in
whitened space, we want a covariance matrix we can use with raw, observed
returns. We find this covariance by transforming the covariance for whitened
returns back to the raw return space.

The whitening is rt+1 = Γ1/2
t rt+1, so the raw-return covariance is

Σt = Γ−1/2
t ΣtΓ

−1/2
t , (43)

which applies to raw, observed asset returns rt+1.

4.8 Covariance Estimates
We estimate Ω̂t, Π̂t, and D̂t in whitened space from time series of returns
before assembling them into the overall covariance and the mapping back
to raw return space. As shown in appendix A, fundamental factor returns
are numerically identical in raw and whitened space when exposures are
transformed consistently, so either set of return series can be used to estimate
Ωt. As before, we can apply exponential weighting to all of these covariance
estimates.

The corresponding whitened hybrid residuals used to estimate D̂t are

êt+1 =
(

IN − PX,t − ẐtẐ
′
t

)
rt+1. (44)

Because PX,tẐt = 0, the two projectors are orthogonal and commute, so the
projector onto the complement of the combined factor space can be written
equivalently using any of

IN −PX,t− ẐtẐ
′
t = (IN −PX,t)(IN − ẐtẐ

′
t) = (IN − ẐtẐ

′
t)(IN −PX,t). (45)

We estimate D̂t by placing the sample variances of êt+1 on the diagonal.
Let the rolling statistical factor returns be

f̂
t+1−s

= Ẑ
′
t−srt+1−s, (46)
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and define the constant-loadings series, with today’s factor loadings applied
to past returns, as

f̂
⋆

t+1−s
= Ẑ

′
trt+1−s. (47)

The rolling series use each date’s contemporaneous statistical factor ex-
posures, while the constant-loading series freezes today’s exposures and
applies them backwards in time. Because statistical exposures drift over
time, the rolling series can “mix” nearby components (e.g., factor 3 migrat-
ing toward factor 2). For near-term risk forecasts, it may be preferable to
estimate the diagonal Π̂t from the constant-loading series f̂

⋆

t+1−s
, which

measures the variance of today’s statistical factors under recent return re-
alizations.7 If statistical factor exposures change slowly and we estimate
the variances over relatively short sample periods, the constant-loading esti-
mates may yield more stable short-term variance forecasts than the rolling
series because they avoid mixing nearby components and yield variance
forecasts aligned with the current loading structure.

We can shrink the k variance estimates toward their mean

π̂ j,t = (1− θ) Vart

(
f̂
⋆

j

)
+ θπt (48)

πt =
1
k

k

∑
j=1

Vart

(
f̂
⋆

j

)
, (49)

where the sample variances Vart

(
f̂
⋆

j

)
can be exponentially weighted. A

reasonable shrinkage intensity is

θ =
ν

1 + ν
, with ν =

k
τ

, (50)

where τ is the effective number of observations defined earlier. This is the
same linear shrinkage rule we applied to eigenvalues earlier, but here it is
applied to the time-series variance estimates. Shrinkage reduces dispersion
in the variance estimates, improving stability without altering the block-
diagonal structure. As always, we can apply exponential weighting when
computing these variances. In practice, mild floors/ceilings on π̂ j,t can
further help numerical stability.

7 These constant-loading series are not tradable because we did not know the factor weights
on previous dates. They are forecasting devices. Although the constant-loading series fix the
sign of the exposures over time, they are still not suitable for estimating off-diagonal elements
in Π̂t. The statistical factor covariance is diagonal by construction and the true elements are
zero. Nonzero sample covariance estimates are noise.
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5 Conclusion
By carefully combining a fundamental factor model with a statistical factor
model applied to the residuals, we can improve the modeling of asset risk
without interfering with the economic interpretation of the fundamental
factors. The hybrid model retains the intuitive structure of the fundamental
framework while allowing additional residual risk structure to be estimated.

The statistical components may significantly improve short-term risk
estimation, especially in high-dimensional portfolios where the residual
covariance from the fundamental model can be noisy and incomplete. How-
ever, since statistical exposures are unstable over time and arbitrarily signed,
their projected returns should not be used for return attribution.

In practice, the hybrid model often serves as a stepping stone: residual
structure captured statistically today may suggest directions for defining
new fundamental factors tomorrow.
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A Raw and Whitened Factor Returns
We whiten raw returns rt+1 with a weighting matrix to find

rt+1 = Γ1/2
t rt+1, (51)

where the weighting matrix Γt is symmetric, positive definite, and often
diagonal. This is a change in coordinates for the returns. Such a change
may be advantageous for statistical precision or analytical convenience.

If raw returns have a factor covariance matrix

Σt = XtΩtX ′
t + Dt, (52)

then whitened returns have a covariance matrix

Γ1/2
t ΣtΓ

1/2
t = Γ1/2

t XtΩtX ′
t Γ1/2

t + Γ1/2
t DtΓ

1/2
t (53)

= X tΩtX ′
t + Dt. (54)

Here, the underlined variables are the whitened versions of the same vari-
ables in raw return space.

The same factor covariance Ωt that applies to raw returns also appears
in whitened space, but now sandwiched by the whitened exposures X t.
This is because a one-period factor return is a scalar payoff x′trt+1, and
scalar payoffs are invariant to a change of coordinates in the return vector.
Hence, factor returns – and their covariance matrix Ωt – are unaffected by
whitening.

Both OLS and GLS provide consistent estimates of the true factor returns.
In particular, there is no need to adjust the GLS estimate although we can
think of it as the result of a regression in whitened space.

Of course, the same logic applies to the statistical factor returns and their
covariance matrix. In practice, however, statistical factors are defined and
estimated directly in whitened space. Outside of this space, the statistical
exposures are not observed, so it is natural to treat their covariance as a
whitened-space object.

By contrast, the whitened residual returns ε̂t+1 and êt+1 are different
from their raw counterparts. They are vectors that live in the space of
returns, not scalar payoffs that are linear functions of the returns. If we
estimate the variances in whitened space, we must transform the estimates
back to raw space.
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